Reactivity of $[Cp_2Ti(CO)_2]$ towards Nitrile and Water Adducts of $B(C_6F_5)_3$: Formation of $[Cp_2Ti(\eta^2-F_3CC_6H_4CN)\cdot B(C_6F_5)_3]$ and $[Cp_2Ti][HOB(C_6F_5)_3]$ with a Ti···F Interaction

Robert Choukroun,*[a] Christian Lorber,[a] and Laure Vendier[a]

Keywords: Titanium / Boranes / N ligands / Structure elucidation / Hydrolysis

The reaction of [Cp₂Ti(CO)₂] with borane adducts $CF_3C_6H_4CN\cdot B(C_6F_5)_3$ and $[H_2O\cdot B(C_6F_5)_3]$ has afforded the titanaazirine [Cp2Ti(η^2 -C,N-F3CC6H4CN)·B(C6F5)3] (1) and the Ti^{III} salt $[Cp_2Ti][HOB(C_6F_5)_3]$ (2), respectively. In both cases, a Ti...F interaction between the titanium centre and an orthofluorine atom of the tris(perfluorophenyl)borane is observed in the X-ray structure determination.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004)

Introduction

The reactivity of the Lewis acid $B(C_6F_5)_3$ with organometallic complexes has been the subject of much literature, mainly concerning Ziegler-Natta catalysts in relation to the cationic group-4 complexes.[1-3] Novel aspects of the reactivity of B(C₆F₅)₃ recently investigated by our group on the vanadium(v) complex [VO(OCH₂CF₃)₃]^[4] and the titanocene [Cp₂Ti(CO)₂]^[5] led to the unexpected formation organometallic complex $[VO(C_6F_5)(\mu$ OCH₂CF₃)(OCH₂CF₃)]₂ and to the acvlborane $[Cp_2Ti(CO)\{\eta^2-OCB(C_6F_5)_3\}]$, respectively. Addition of a Lewis acid to a nitrile allows the activation of the C-N nitrile bond; reaction with the vanadocene [VCp₂] gives the vanada(IV)azirine complex $[Cp_2V\{\eta^2-RC=N\cdot B(C_6F_5)_3\}]$ $(R = CH_3, CF_3C_6H_4)^{[6]}$

To prepare the titanium analogue to the vanada(IV)azirine series, we extended our findings on the reactivity of a nitrile bond activated with the Lewis acid B(C₆F₅)₃ toward the vanadocene^[6] to the titanocene [Cp₂Ti(CO)₂]. In addition, a titanium(III) complex has been obtained by a controlled hydrolytic reaction with the $[H_2O \cdot B(C_6F_5)_3]$ adduct.

Results and Discussion

[Cp₂Ti(CO)₂] reacts with a stoichiometric mixture of $CF_3C_6H_4CN$ and $B(C_6F_5)_3$ at 50 $^{\circ}C$ in toluene to give a red-orange crystalline complex of the titanaazirine $[Cp_2Ti(\eta^2-C,N-F_3CC_6H_4CN)\cdot B(C_6F_5)_3]$ (1), which has been

isolated and characterized by an X-ray structure determination (Scheme 1, Figure 1).

$$Cp_2Ti(CO)_2 + F_3CC_6H_4CN \cdot B(C_6F_5)_3$$

- 2 CO
$$B(C_6F_5)_3$$
 $Cp_2Ti < 0$

1

Scheme 1. Synthesis of $[Cp_2Ti(\eta^2-C,N-F_3CC_6H_4CN\cdot B(C_6F_5)_3]$ (1)

This is reminiscent of our recent work based on the vanadocene [VCp2] and the so-called "activated" nitrile RCN·B(C₆F₅)₃.^[6] The well-known formation of adducts between nitrile and a Lewis acid is associated with an increase in the v(CN) frequency in the IR spectrum and an increase of the electron density on the C≡N triple bond. [3a,7]

The C-N nitrile bond is attached to the titanium atom through two σ -type Ti-C and Ti-N bonds of 2.075(2) and 2.0940(18) A. These values are expected for such bonds, by comparison with those of the iminoacyl complex [Ti(OAr- $2,6-iPr_2)_2(\eta^2-tBuNCCH_2Ph)(CH_2Ph)$ [Ti-C 2.086(6), $Ti-N \ 2.025(5) \ \text{Å}$] and $[Cp_2Ti(\eta^2-x,yNCPh)] \ [xy = 2,6 (CH_3)_2C_6H_3$ [Ti-C 2.096(4), Ti-N 2.149(4) Å]. [8] The carbon-nitrogen distance [1.243(3) A] is typical of a carbon-nitrogen double bond. There are small differences between the distances and angles in the organic framework $F_3CC_6H_4CN\cdot B(C_6F_5)_3$ of 1 and those in the previously published vanadium(IV) analogue complex $[Cp_2V(\eta^2-C,N-1)]$ $F_3CC_6H_4CN) \cdot B(C_6F_5)_3$. [6] The molecular geometry of 1 is

Laboratoire de Chimie de Coordination, CNRS, 205 Route de Narbonne, 31077 Toulouse Cedex, France Fax: (internat.) + 33-5-61553003E-mail: choukrou@lcc-toulouse.fr

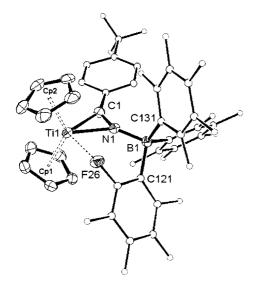


Figure 1. Molecular structure of 1; hydrogen atoms and some labeled atoms are omitted for clarity; selected bond lengths [Å] and angles [°]: Ti(1) - C(1) 2.075(2), Ti(1) - N(1) 2.0940(18), C(1) - N(1) 1.243(3), N(1) - B(1) 1.575(3), C(1) - Ti(1) - N(1) 34.69(3), C(1) - N(1) - B(1) 147.19(9), Ti(1) - N(1) - C(1) 140.84(14)

similar to vanadium(IV) except for a C-F...Ti interaction in the solid state between an ortho-fluorine atom of the borane adduct and the titanium atom. The Ti-F distance (2.453 Å) is notably less than the sum of the Ti and F van der Walls radii (1.45 and 1.47 Å, respectively). This is similar to that found in $[(C_5Me_5)Ti\{C_5Me_4CH_2B(C_6F_5)_3\}][Ti-ortho$ fluorine atom = 2.406(3) Å].^[9] A small but significant lengthening of the C-F(···Ti) bond [1.378(2) Å] relative to other C-F bonds (average 1.346 Å) of the perfluorophenyl groups of the borane is observed. In the ¹³C NMR spectrum, the characteristic carbon resonance at $\delta = 225.6$ ppm of the η^2 -C,N carbon atom is found and the corresponding v(C=N) band appears in the IR spectrum at 1725 cm⁻¹. ¹⁹F NMR obtained in [D₈]THF (the only solvent in which 3 is soluble) does not show a peak attributable to a Ti···F interaction at room temperature, but at 233 K the five fluorine substituents of one pentafluorophenyl group become inequivalent. This splitting exhibits a high-field ¹⁹F resonance at $\delta = -128.1$ ppm, which is characteristic for a bridging fluorine atom, in agreement with the fluorine-bridged solidstate structure. The C-F···V interaction was not observed in the vanadium analogue in the solid state but is demonstrated in solution by EPR. [6] Complex 1 can also be obtained directly by addition of a toluene solution of $CF_3C_6H_4CN$ on insoluble $[Cp_2Ti(CO)\{\eta^2-OCB(C_6F_5)_3\}]^{[5]}$ in toluene with evolution of CO.

Additionally, accidental hydrolysis during the crystallization procedure of 1 yielded a few large crystals of a blue complex. This hydrolysis was confirmed by treating the [H₂O·B(C₆F₅)₃] adduct, prepared in situ,^[10] with [Cp₂Ti(CO)₂] in pentane, which gave a blue complex after at least 4 d. Although an X-ray structure determination allowed us to characterize this product as the titanoxyborane [Cp₂TiOB(C₆F₅)₃], careful investigation of the crystals by IR and NMR spectroscopy revealed the salt structure

© 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

[Cp₂Ti][HOB(C₆F₅)₃] (2) for the blue Ti^{III} paramagnetic crystals (vide infra) (Scheme 2). This ambiguous situation has been clarified by preparing the deuterated analogue [Cp₂Ti][DOB(C₆F₅)₃] from D₂O·B(C₆F₅)₃ and [Cp₂Ti(CO)₂]. The ν_{OH} and ν_{OD} IR frequencies (3645 and 2680 cm⁻¹, respectively) confirm chemically the formulation of the counter-anion as $[HOB(C_6F_5)_3]$; unfortunately, the hydrogen atom bound to the oxygen atom could not be located in the X-ray structure determination. Although the paramagnetic [Cp₂Ti]⁺ fragment is NMR-silent, ¹H and ²H NMR spectra of the diamagnetic anion show a peak at δ = 3 ppm ($\Delta v_{1/2} = 36$ Hz) which could be due to a hydrogen atom in a BOH moiety. The Ti-O bond [2.1456(18) Å] is longer than a σ(Ti-O) distance, [11] which excludes the titanoxyborane formulation (Figure 2). This distance is quite similar to other Ti-O bond lengths of a coordinated alcohol on a titanium centre: [Ti(OC₆F₅)₃(OiPr)(HOiPr)] $2.128(7) \text{ Å}, [\text{Ti}\{\text{OCH}(\text{CF}_3)_2\}_2(\text{OEt})_2(\text{HOEt})] 2.187(9) \text{ Å},^{[12]}$ $[TiCl_2(OiPr)(HOiPr)(\mu-Cl)]_2$ 2.087(4) Å, and $[TiCl_2(O-I)]_2$ iPr)(HOiPr)(μ -OiPr)]₂ 2.093(2).^[13] The B-O bond [1.519(3) Å] is longer than in the anion $[(C_6F_5)_3BOH]^-$ [1.487(3) Å] [1.597(2) Å in $H_2O \cdot B(C_6F_5)_3^{[14]}$]. A $C-F \cdots Ti$ interaction between the titanium atom and one ortho-fluorine atom of

$$Cp_{2}Ti(CO)_{2} + (H_{2}O \cdot B(C_{6}F_{5})_{3} \longrightarrow [H]^{*} + [HOB(C_{6}F_{5})_{3}]^{*})$$

$$\downarrow - 2 CO$$

$$\left\{ [Cp_{2}TiH]^{*} [HOB(C_{6}F_{5})_{3}]^{*} \right\}$$

$$\downarrow - 1/2 H_{2}$$

$$[Cp_{2}Ti]^{*} [HOB(C_{6}F_{5})_{3}]^{*}$$
2

Scheme 2. Suggested hydrolytic pathway leading to $[Cp_2Ti][HOB(C_6F_5)_3]$ (2)

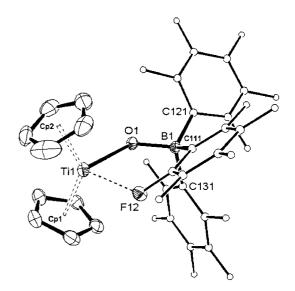


Figure 2. Molecular structure of **2**; hydrogen atoms and some labeled atoms are omitted for clarity; selected bond lengths [Å] and angles [°]: $Ti(1) - O(1) \ 2.1456(18)$, $O(1) - B(1) \ 1.519(3)$, $Ti(1) - F(12) \ 2.2841(17)$; $Ti(1) - O(1) - B(1) \ 137.78(14)$, $O(1) - Ti(1) - F(12) \ 73.37(6)$

the $B(C_6F_5)_3$ moiety occurs in the solid-state structure. The Ti···F distance [2.2841(17) Å] is still shorter than in complex 1 and there is a lengthening of the $C-F(\cdot\cdot\cdot Ti)$ bond [1.375(3) Å] relative to other C-F bonds (average 1.340 Å) of the perfluorophenyl groups of the borane. A similar Ti^{III} complex as [rac-(ebthi)Ti][HOB(C_6F_5) $_3$] [ebthi = 1,2-ethylene-1,1'-bis(η^5 -tetrahydroindenyl)], formed due to adventitious water, has been recently fully characterized by an X-ray structure analysis; the hydrogen atom attached to the oxygen atom could not be localized [d(Ti-O) = 2.097(3) Å; d(B-O) = 1.482(4) Å; $d(Ti\cdot\cdot\cdot F) = 2.365(2)$ Å]. [15] Similar $Ti\cdot\cdot\cdot F$ distances between the titanium centre and ortho-fluorine atoms in zwitterionic Ti^{III} structures have also been observed { $[CpTi\{C_5H_4B(C_6F_5)_3\}]$: 2.248(2), 2.223(3) Å; $[iPrC_5H_4)Ti\{iPrC_5H_3B(C_6F_5)_3\}$]: 2.64(2), 2.256(2) Å}. [16,17]

Our result differs slightly from those of Green and colleagues with [MCp₂] (M = Cr, Fe, Co) yielding cationic $[MCp_2]^+$ with a counter-anion such as $[(C_6F_5)_3B(\mu OH)B(C_{6}F_{5})_{3}]^{-} \quad or \quad [(C_{6}F_{5})_{3}BOH \\ \cdots \\ H_{2}OB(C_{6}F_{5})_{3}]^{-}.^{[14]} \quad In$ their case the observed difference in the anion part is due to their synthetic procedure {2 equiv. of H₂O·B(C₆F₅)₃ or an equimolecular mixture of $H_2O \cdot B(C_6F_5)_3/B(C_6F_5)_3$ are implied in the reaction with [MCp₂]. Their proposed pathway contains the suggested intermediate $[Cp_2M][HOB(C_6F_5)_3],$ which is corroborated {Scheme 2; the first intermediate $[Cp_2TiH][HOB(C_6F_5)_3]$ is assumed only. Complex 2 is blue, and its magnetic susceptibility (1.76 μ B) and EPR spectrum in THF (g = 1.974) confirm that it is a paramagnetic Ti^{III} complex. The single line in the EPR spectrum implies that there is no interaction between the Ti atom and the *ortho*-fluorine atom (I =1/2) in THF solution, suggesting that the solvent occupies a coordination position on the metal atom, thus releasing the Ti···F interaction. The EPR solution spectrum is unchanged at -100 °C.

In conclusion, the reactivity of the borane adducts $[RCN \cdot B(C_6F_5)_3]$ and $[H_2O \cdot B(C_6F_5)_3]$ is described with $[Cp_2Ti(CO)_2]$. As expected, the formation of the titana(IV)-azirine complex 1 confirms the role of the tris(perfluorophenyl)borane in activating a nitrile bond, as already observed in the vanadium chemistry. The formation of 2 can be controlled and derives from an hydrolytic decomposition pathway.

Experimental Section

General: All manipulations were carried out using standard Schlenk line or dry-box techniques under argon. Solvents were boiled under reflux, dried with appropriate agents under argon, collected by distillation, and then stored in a dry-box over activated molecular sieves (4 Å). Deuterated solvents were degassed and dried over activated molecular sieves (4 Å). NMR spectroscopic data were recorded using Bruker AMX-400, DPX-300, and AC-200 spectrometers, and referenced internally to residual protio solvent (1 H) resonances, and are reported relative to tetramethylsilane ($\delta = 0$ ppm). 19 F NMR (188.298 MHz) spectra were recorded with a Bruker AC-200 spectrometer (reference CF₃CO₂H). EPR spectra were obtained by using a Bruker ESP300E spectrometer. Elemental

analyses (C, H, N) were performed at the Laboratoire de Chimie de Coordination (Toulouse, France). $B(C_6F_5)_3$ was prepared according to the literature.^[18]

 $[Cp_2Ti(\eta^2-F_3CC_6H_4CN)\cdot B(C_6F_5)_3]$ (1): A freshly prepared toluene (3 mL) solution of B(C₆F₅)₃ (51 mg, 0.01 mmol) and CF₃C₆H₄CN (17 mg, 0.01 mmol) was added to [Cp₂Ti(CO)₂] (23 mg, 0.01 mmol) in toluene (3 mL). The resulting red solution was heated to 50 °C for 12 h. Red crystals of 1 were formed at room temperature (15 mg). The filtrate was left for 2 d to give a further crop of microcrystalline 1 (35 mg). Yield: 58%. C₃₆H₁₄BF₁₈NTi (861.19): calcd. C 50.21, H 1.64, N 1.63; found: C 50.3, H 1.58, N 1.61. IR: $\tilde{v} = 1725 \, [v(C \equiv N)] \, \text{cm}^{-1}$. ¹H NMR ([D₈]THF): $\delta = 6.18 \, (\text{s, Cp})$, 7.85, 7.21 (d, ${}^{1}J_{CH} = 8.3 \text{ Hz}$, $C_{6}H_{4}$) ppm. ${}^{11}B$ NMR ([D₈]THF): δ = -9.60 ppm. ¹³C NMR ([D₈]THF): δ = 114.3 (d, ¹ $J_{C,H}$ = 174 Hz, Cp), 121 [br., $\Delta v_{1/2} = 190$ Hz, *ipso-*C, B(C₆F₅)], 125.2 (q, ${}^{1}J_{C,F} = 253 \text{ Hz}, CF_{3}$), 126.8 (d, ${}^{1}J_{C,H} = 168 \text{ Hz}, C_{6}H_{4}$), 133.7, (d, ${}^{1}J_{C,H} = 164 \text{ Hz}, C_{6}H_{4}), 134.2 \text{ (q, } {}^{3}J_{C,F} = 33 \text{ Hz}, CCF_{3}), 136.1 \text{ (s,}$ *ipso-*C, C₆H₄), 138.8 (d, ${}^{1}J_{C,F} = 253 \text{ Hz}$, C₆F₅), 141.3 (d, ${}^{1}J_{C,F} =$ 250 Hz, C_6F_5), 150.0 (d, ${}^1J_{C,F} = 237$ Hz, C_6F_5), 225.6 (s, C=N) ppm. ¹⁹F NMR (376.41 MHz, 298 K, $[D_8]$ THF): $\delta = 13.3$ (s, CF_3), -56.9 (br., 6 o-F, C₆F₅), -82.5 (t, 3 p-F, C₆F₅), -88.6 (br., 6 m-F, C_6F_5); (233 K): $\delta = 12.7$ (s, CF_3), -56.8 (d, 1 o-F, C_6F_5), -57.2(d, 4 o-F, C_6F_5), -82.2 (t, 1 p-F, C_6F_5), -87.5 (t, 4 p-F C_6F_5), -85.4 (t, 1 m-F, C_6F_5), -87.9 (1 m-F, C_6F_5), -88.5 (t, 4 m-F, C_6F_5), -128.1 (d, 1 o-F, C_6F_5) ppm.

 $[Cp_2Ti][HOB(C_6F_5)_3]$ (2): $[Cp_2Ti(CO)_2]$ (23 mg, 0.01 mmol) in pentane (3 mL) was added to a pentane suspension of B(C₆F₅)₃ (51 mg, 0.01 mmol) in the presence of H_2O (or D_2O) (1.8 μ mol). After leaving the resultant red solution for one week, blue crystalline 2 was obtained in 35% yield (25 mg). Another synthesis from a mixture of $[Cp_2Ti(CO)_2]$ (23 mg, 0.01 mmol) and $B(C_6F_5)_3$ (51 mg, 0.01 mmol) in pentane (5 mL), passed several times through undried deoxygenated Celite and left for one week, afforded large blue crystals of 2 that were suitable for X-ray analysis. C₂₈H₁₀BF₁₅OTi (706.07): calcd. C 47.63, H 1.43; found: C 47.24, H 1.33. EPR: g =1.974, $a(^{49}\text{Ti}) = 11.0 \text{ G}$ (a single line with low intensity satellites due to the interaction of d1 electron with 49Ti and 47Ti isotopes (5.51% abundant, I = 7/2 and 7.75% abundant, I = 5/2, respectively), the six inner components of the ⁴⁹Ti octuplet exactly superimpose on the sextuplet from 47 Ti). $\mu_{eff} = 1.76 \mu B$. 1 H NMR ([D₈]THF): $\delta = 3$ (br., $\Delta v_{1/2} = 36$ Hz, BOH) ppm.

Crystallographic Data for 1 and 2: For structures 1 and 2 (Table 1) data were collected using a Stoe Imaging Plate Diffraction System (IPDS). The final unit cell parameters were obtained by leastsquares refinement of a set of 5000 reflections, and crystal decay was monitored by measuring 200 reflections by image. No fluctuations of the intensity were observed over the course of the data collection. A semiempirical absorption correction^[19] was applied to the data. The structure was solved by direct methods using SIR92^[20] and refined by least-squares procedures on F^2 with the aid of SHELXL-97[21] which is included in WinGX (version 1.63).^[22] The atomic scattering factors were taken from International Tables for X-ray crystallography. [23] All hydrogen atoms were located on a difference Fourier map. All the remaining nonhydrogen atoms were anisotropically refined and in the last refinement cycles a weighting scheme was used where weights were calculated from $w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$, where $P = (F_0^2 + 2F_0^2)/3$. The molecules were drawn using the program ORTEP32.[24] The criteria for a satisfactory complete analysis were the ratio of rms shift to standard deviation being less than 0.1 and no significant features in final difference maps. CCDC-212614 (1) and -212615 (2) contain the supplementary crystallographic data for this paper. FULL PAPER _____ R. Choukroun, C. Lorber, L. Vendier

Table 1. Summary of crystal data, data collection, and structure refinement parameters

	1	2
Empirical formula	C ₃₆ H ₁₄ BF ₁₈ NTi	C ₂₈ H ₁₀ BF ₁₅ OTi
Formula mass	861.19	706.07
Temperature [K]	160	160
Wavelength [Å]	0.71073	0.71073
Crystal system	orthorhombic	monoclinic
Space group	$P2_12_12_1$	Cc
$a \left[\mathring{A} \right]$	9.106(5)	9.189(2)
b [Å]	18.720(5)	17.390(3)
c [Å]	19.499(5)	16.173(3)
β[ο]	90.000(5)	97.63(3)
$V[\mathring{\mathbf{A}}^3]$	3324(2)	2561.5(9)
Z, density [g cm ⁻³]	4, 1.721	4, 1.831
F(000)	1704	1392
Absorption coefficient [mm ⁻¹]	0.389	0.468
Crystal description	prismatic	prismatic
Crystal size [mm]	$0.4 \times 0.32 \times 0.27$	$0.45 \times 0.40 \times 0.22$
Collection method	rotation	rotation
2θ range for data collection [°]	3.3-52.1	3.3-52.1
No. reflections collected/unique	26272/6508 [R(int) = 0.0437]	6541/4260 [R(int) = 0.0386]
Completeness to 2θ [%]	98.4	79.8
Refinement method	Full-matrix least squares on F^2	Full-matrix least squares on F ²
Data/restraints/parameters	6508/0/514	4260/2/416
GOF on F^2	1.026	1.046
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0314, wR2 = 0.0719	R1 = 0.0442, wR2 = 0.1157
R indices (total)	R1 = 0.0404, wR2 = 0.0753	R1 = 0.0425, wR2 = 0.1157
Largest difference peak and hole [e·Å ⁻³]	$0.255 \text{ and } -0.192 \text{ e} \cdot \text{Å}^{-3}$	$0.313 \text{ and } -0.286 \text{ e} \cdot \text{Å}^{-3}$

These data can be obtained free of charge at www.ccdc.ac.uk/conts/retrieving.html [or from the Cambridge Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: (internat.) + 44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].

Acknowledgments

The CNRS is thanked for financial support.

- [1] For leading recent reviews, see: [1a] G. W. Coates, P. D. Hustad, S. Reiinartz, Angew. Chem. Int. Ed. 2002, 41, 2236. [1b] E. You-Xian Chen, T. J. Marks, Chem. Rev. 2000, 100, 1391. [1c] G. J. P. Britovsek, V. C. Gibson, D. F. Wass, Angew. Chem. Int. Ed. 1999, 38, 428.
- [2] [2a] W. E. Piers, T. Chivers, Chem. Soc. Rev. 1997, 26, 345.
 [2b] D. J. Parks, M. Piers, W. E. Parvez, R. Atencio, M. Zaworotko, Organometallics 1998, 17, 1369.
 [2c] D. J. Parks, J. M. Blackwell, W. E. Piers, J. Org. Chem. 2000, 3090.
 [2d] D. J. Parks, R. E. von H. Spence, W. E. Piers, Angew. Chem. Int. Ed. Engl. 1995, 34, 809.
 [2e] J. M. Blackwell, W. E. Piers, M. Parvez, R. McDonald, Organometallics 2002, 21, 1400.
- [3] [3a] H. Jacobsen, H. Berke, S. Döring, G. Kehr, G. Erker, R. Fröhlich, O. Meyer, *Organometallics* 1999, 18, 1724. [3b] D. Vagedes, G. Kehr, D. König, K. Wedeking, R. Frölich, G. Erker, C. Mück-Lichtenfeld, S. Grimme, *Eur. J. Inorg. Chem.* 2002, 2015. [3c] J. Klosin, G. R. Roof, E. Y. X. Chen, *Organometallics* 2000, 19, 4684. [3d] D. C. Bradley, I. S. Harding, A. D. Keefe, M. Motevalli, D. H. Zheng, *J. Chem. Soc., Dalton, Trans.* 1996, 3931. [3e] M. L. H. Green, J. Haggitt, C. P. Mehnert, *J. Chem. Soc., Chem. Commun.* 1995, 1853. [3f] A. Antinolo, F. Carillo-Hermosilla, I. del Hierro, A. Otero, M. Fajardo, Y. Mugnier, *Organometallics* 1997, 16, 4161.
- [4] F. Wolff, R. Choukroun, C. Lorber, B. Donnadieu, Eur. J. Inorg. Chem. 2003, 628.
- [5] R. Choukroun, C. Lorber, B. Donnadieu, Organometallic. 2003, 22, 1995.

- [6] R. Choukroun, C. Lorber, B. Donnadieu, Chem. Eur. J. 2002, 8, 2700.
- [7] R. Hoti, Z. Mihalic, H. Vancik, Croat. Chem. Acta 1995, 2, 359.
- [8] [8a] L. R. Chamberlain, L. D. Durfee, P. E. Fanwick, L. Kobriger, S. L. Latesky, A. K. McMullen, I. P. Rothwell, K. Folting, J. C. Huffman, W. E. Streib, R. Wang, J. Am. Chem. Soc. 1987, 109, 390. [8b] F. van Bolhuis, E. J. M. de Boer, J. H. Teuben, J. Organomet. Chem. 1979, 170, 299.
- [9] V. V. Burlakov, P. M. Pellny, P. Arndt, W. Baumann, A. Spannenberg, V. B. Shur, U. Rosenthal, *Chem. Commun.* 2000, 241.
- [10] T. Beringhelli, D. Maggioni, G. D'Alfonso, Organometallics 2001, 20, 4927.
- [11] [11a] J. C. Huffman, K. G. Moloy, J. A. Marsella, K. G. Caulton, J. Am. Chem. Soc. 1980, 102, 3009. [11b] J. L. Wang, F. M. Miao, X. J. X. Fan, X. Feng, J. T. Wang, Acta Crystallogr., Sect. C 1990, 46, 1633. [11c] U. Schubert, H. Buhler, B. Hirle, Chem. Ber. 1992, 125, 999.
- [12] C. Campbell, S. G. Bott, R. Larsen, W. G. Van Der Sluys, Inorg. Chem. 1994, 33, 4950.
- [13] Y. T. Wu, Y. C. Ho, C. C. Lin, H. M. Gau, *Inorg. Chem.* 1996, 35, 5948.
- [14] L. H. Doerrer, M. L. H. Green, J. Chem. Soc., Dalton Trans. 1999, 4325.
- [15] A. Spannenberg, V. V. Burlakov, P. Arndt, W. Baumann, V. B. Shur, U. Rosenthal, Z. Kristallogr. NCS 2002, 217, 546.
- [16] V. V. Burlakov, S. I. Troyanov, A. V. Letov, L. I. Strunkina, M. Kh. Minacheva, G. G. Furin, U. Rosenthal, V. B. Shur, J. Organomet. Chem. 2000, 598, 243.
- [17] V. V. Burlakov, P. Arndt, W. Baumann, A. Spannenberg, U. Rosenthal, A. V. Letov, K. A. Lyssenko, A. A. Korlyukov, L. I. Strunkina, M. Kh. Minacheva, V. B. Shur, *Organometallics* 2001, 20, 4072.
- [18] A. G. Massey, A. J. Park, J. Organomet. Chem. 1966, 5, 218.
- [19] N. Walker, D. Stuart, Acta Crystallogr., Sect. A 1983, 39, 158.
- [20] A. Altomare, G. Cascarano, G. Giacovazzo, A. Guagliardi, M.

- C. Burla, G. Polidori, M. Camalli, J. Appl. Crystallogr. 1994, 27, 435.
- [21] G. M. Sheldrick, SHELX97, Programs for Crystal Structure Analysis, University of Göttingen, Germany, 1998.
- [22] L. J. Farrugia, J. Appl. Crystallogr. 1999, 32, 837. [23] International Tables for X-ray Crystallography (Eds.: J. A. Ibers,
- W. C. Hamilton), Kynoch Press, Birmingham, England, 1974, vol. IV.
- [24] L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565.

Received June 12, 2003 Early View Article Published Online November 4, 2003

321